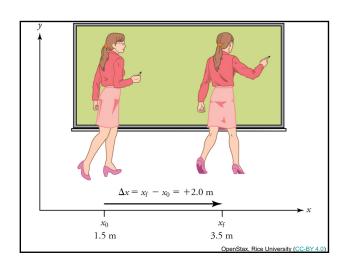


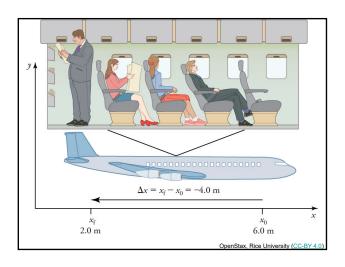
Position

- Where an object is at a particular time with respect to a reference frame.
 - Earth is often used as a reference frame.

- The car is 10 m to the right of the house. The car is 20 m to the left of the tree.

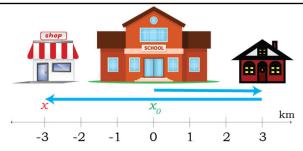
House – rdevries (public domain) Car – Machovka (public domain) Tree – GDJ (public domain)


Displacement


• The change in position of an object.

$$\Delta x = x - x_0$$

where:


 Δx is the displacement x is the final position x_0 is the initial position

Distance

- Displacement is described in terms of direction, distance is not.
- Distance is defined to be the magnitude or size of displacement between two positions.
- Note that the distance between two positions is not the same as the distance traveled between them. Distance traveled is the total length of the path traveled between two positions.

- A person travels from school to home and then to the store.
 - Displacement = -3 km
 - Distance = 3 km
 - Distance traveled = 9 km

Vectors and Scalars

- A **vector** is any quantity with both *magnitude* and *direction*.
 - Displacement (100 km North)
 - Velocity (110 km/h West)
- A **scalar** is any quantity that has a *magnitude*, but no direction.
 - Temperature (20°C)
 - Mass (70 kg)

,	
,	

 A vector quantity is represented by an arrow over the variable. \$\vec{v}\$ For one dimensional variables we normally do not use vector notation. 	
 Direction To describe the direction of a vector quantity, you must designate a coordinate system within the reference frame. For one-dimensional motion, this is a simple coordinate system consisting of a one-dimensional coordinate line. For horizontal motion, motion to the right is usually considered positive (+), and motion to the left is considered negative (-). 	
For vertical motion, motion up is usually positive and motion down is negative.	

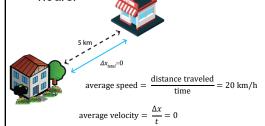
Velocity

 Average velocity is displacement (change in position) divided by the time of travel.

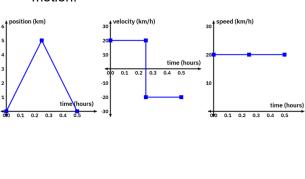
$$v_{avg} = \frac{\Delta x}{\Delta t} = \frac{x - x_0}{t - t_0}$$

Where: v_{avg} is the average velocity Δx is the displacement t is the time

- The average velocity of an object does not tell us anything about what happens to it between the start and end points.
- The motion needs to be divided into smaller intervals to get more detailed information.
- Instantaneous velocity, v, is the average velocity at a specific instant in time (or over an infinitesimally small time interval).


Speed

- Average speed is the distance traveled divided by elapsed time.
- **Instantaneous speed** is the magnitude of instantaneous velocity.


-	
-	
_	
-	
_	
-	
-	
_	
-	
_	
-	
_	
-	_
-	
_	
_	
-	
_	
-	

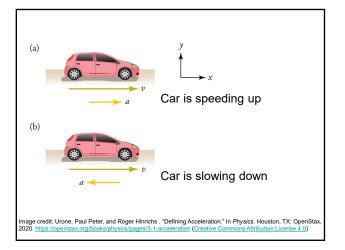
Example

 You drive 5 km to school, turn around and then drive back home. The trip takes 0.5 hours.

• A graph can also be used to visualize the motion.

Acceleration

 Average acceleration is the rate at which velocity changes.


$$a_{avg} = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{t - t_0}$$

Where:

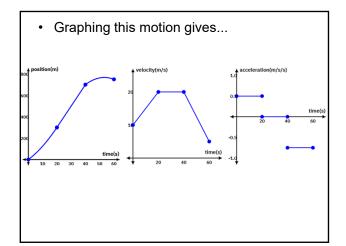
 a_{avg} is the average acceleration v is the velocity

t is the time

- Acceleration is a vector in the same direction as the change in velocity.
- Since velocity is a vector, it can change either in magnitude or in direction.
- Acceleration is therefore a change in either speed or direction, or both.
- When an object's acceleration is in the same direction of its motion, the object will speed up.
- When an object's acceleration is opposite to the direction as its motion, the object will slow down.

Example

 A car with a velocity of 10 m/s accelerates to a velocity of 20 m/s in 20 seconds then drives at a constant velocity for 20 seconds. The car then slows down to 5.0 m/s in 20 seconds. Calculate the average acceleration for the first and last 20 seconds of the trip. • First 20 seconds


$$a_{avg} = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{t - t_0}$$

$$a_{avg} = \frac{20 - 10}{20} = 0.5 \text{ m/s}^2$$

• Last 20 seconds

$$a_{avg} = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{t - t_0}$$

$$a_{avg} = \frac{5 - 20}{20} = -0.75 \text{ m/s}^2$$

